
Distributed Systems Lecture 1 1

Distributed Systems
� Lecturer: Therese Berg therese.berg@it.uu.se.� Recommended text book:

“Distributed Systems Concepts and Design”, Coulouris,

Dollimore and Kindberg. Addison and Wesley.� Course webpage to follow.

http://www.it.uu.se/edu/course/homepage/datsyst2/p2ht06

The slides are put on the webpage.



Distributed Systems Lecture 1 2

Course Plan
� Introduction.� Remote Objects and Remote Procedure calls.� Replication� Coordination and Agreement� Transactions� Distributed Transactions (if time)� Guest lecturer - Ambient Networks, mobil communication



Distributed Systems Lecture 1 3

What is a distributed System?

“A distributed system is one in which hardware or software

components located at networked computers communicate

and coordinate their actions only by passing messages.”

Motivation: share resources.



Distributed Systems Lecture 1 4

Consequences of distributed systems

� Concurrency.� No global Clock.� Independent Failures.



Distributed Systems Lecture 1 5

Concurrency

� Different Computers on a network. Each computer can be doing

work at the same time.� What happens if two computers want to access a resource at the

same time?� Network delays are not constant make synchronisation difficult.



Distributed Systems Lecture 1 6

No Global Clock
� When programs need to cooperate they coordinate their actions

by exchanging messages.� Close coordination often depends on a shared idea of the time at

which events occur. Ex: make command on Unix systems.� There are limits to the accuracy with which components in a

network can synchronise their clocks.� Direct consequence of the fact that messages are sent through a

network and network delays are not constant (or even bounded).



Distributed Systems Lecture 1 7

Independent failures
� All computer systems can fail it is good design to build

robustness in.� Distributed systems fail in new ways.� Network faults might result in components being isolated but not

stopping. What happens if you are waiting for an acknowledge

message and you never get it? How do you know if the remote

system got your message?



Distributed Systems Lecture 1 8

Examples of Distributed Systems

� The Internet.� Intranets. (Internal Internet inside a company)� Grid Computing.� P2P network (Peer to Peer).



Distributed Systems Lecture 1 9

Resource Sharing

� What is a resource?

– Hardware. Shared printer. Shared processor

– Pieces of running software, distributed objects, remote

procedures.

– Data.



Distributed Systems Lecture 1 10

Challenges
� Heterogeneity. (Everybody is different).� Security� Scalability� Failure Handling� Concurrency� Transparency



Distributed Systems Lecture 1 11

Heterogeneity
� Different networks� Different hardware� Different operating systems� Different programing languages� Different implementations.

How do we solve all this?



Distributed Systems Lecture 1 12

Middleware
� A software layer that provides programming abstractions as well

as masking the heterogeneity of the underlying system.� Examples include:

– CORBA

– Java RMI, Jini� How do you deal with mobile code in a heterogeneous

environment?

– One possible solution is to use a virtual machine, Java VM or

.Net.



Distributed Systems Lecture 1 13

Security
� On its own network traffic is not secure. Any message could in

principle be seen by anybody. Packet sniffers.� Encryption can solve some problems.

More problems include:� Denial of service attacks.� How do you make mobile code secure.



Distributed Systems Lecture 1 14

Scalability
� Short story, things get bigger all the time. More users, more

computers, more data, more ...� Physical resources.� Software resources.� Avoid bottlenecks in performance.� Design problem.



Distributed Systems Lecture 1 15

Failure Handling
� Detecting Failures: Some failures can be detected. But in a

distributed system it becomes hard.� Failure Masking: Retransmission, backups (data and servers).� Tolerating failures: Klients and users tolerate faults.� Recovery: Server crash, data it updates in inconsistent state.� Redundancy: Use redundant komponents.



Distributed Systems Lecture 1 16

Concurrency

� Managing shared resources.� For an object to be safe in a concurrent environment its

operations must be synchronised in such a way that data remains

consistent (bank account example).



Distributed Systems Lecture 1 17

Transparency
� Access transparency enables local and remote resources to be

accessed using identical operations.� Location transparency. Allows access without knowing object

locations.� Concurrency transparency� Replication transparency: enables multiple instances to be active

to increase reliability and performance.� Failure transparency� Mobility transparency.



Distributed Systems Lecture 1 18

Architectural Models

� An Architectural model of a distributed system is concerned with

the placements of its parts and the relationship between them.� We are going to look the most popular design for a distributed

system. The client server model.



Distributed Systems Lecture 1 19

Insert figure 2.2. from the book here.



Distributed Systems Lecture 1 20

Client Server Model
� Process acts as a client and sends requests to a server.� Examples:

– Webserver. Client (Web browser) sends a request for a

webpage the webserver then returns the requested server.

– A SQL server, client processes send request for data or

requests to modify data.� Servers can become clients. For example the webserver might

simply be a web proxy and pass requests on to other servers.



Distributed Systems Lecture 1 21

Variations of the client-server model

� Mobile code and Mobile Agents� Thin clients



Distributed Systems Lecture 1 22

Mobile Code and Mobile Agents

.

� Mobile Code.

– A client request results in downloading of applet code and

then the client interacts with the applet.� Mobile Agents

– A mobile agent is a running program (code and data) the

travels from one computer to another in a network performing

some task.



Distributed Systems Lecture 1 23

Thin Clients
� A thin client refers to software/hardware the supports a

window-based user interface local to the user while executing

application programs on a remote computer.� Examples include:

– Sun Rays

– VNC

– Microsoft remote desktop.



Distributed Systems Lecture 1 24

Summary and Conclusion
� Distributed Systems are everywhere.� Distributed systems have their own design problems and issues.� Middleware supplies abstractions to allow distributed systems to

be designed. Focus of this course: What abstractions are

necessary to a distributed system.� Client-server architecture is a common way of designing

distributed systems.


